1,137 research outputs found

    Damping of Oscillations in Layer-by-Layer Growth

    Full text link
    We present a theory for the damping of layer-by-layer growth oscillations in molecular beam epitaxy. The surface becomes rough on distances larger than a layer coherence length which is substantially larger than the diffusion length. The damping time can be calculated by a comparison of the competing roughening and smoothening mechanisms. The dependence on the growth conditions, temperature and deposition rate, is characterized by a power law. The theoretical results are confirmed by computer simulations.Comment: 19 pages, RevTex, 5 Postscript figures, needs psfig.st

    Not a bad impression: a fine 'Rembrandt' print in McGill's collection

    Get PDF

    Deluxe Devotional Prayer Books: A McGill Book of Hours

    Get PDF

    Unjamming of Granular Packings due to Local Perturbations: Stability and Decay of Displacements

    Full text link
    We study the mechanical response generated by local deformations in jammed packings of rigid disks. Based on discrete element simulations we determine the critical force of the local perturbation that is needed to break the mechanical equilibrium and examine the generated displacement field. Displacements decay as a power law of the distance from the perturbation point. The decay exponent and the critical force exhibit nontrivial dependence on the friction: Both quantities are nonmonotonic and have a sharp maximum at the friction coefficient 0.1. We find that the mechanical response properties are closely related to the problem of force-indeterminacy where similar nonmonotonic behavior was observed previously. We establish direct connection between the critical force and the ensemble of static force networks.Comment: 4 pages, 4 figure

    Extent of force indeterminacy in packings of frictional rigid disks

    Full text link
    Static packings of frictional rigid particles are investigated by means of discrete element simulations. We explore the ensemble of allowed force realizations in the space of contact forces for a given packing structure. We estimate the extent of force indeterminacy with different methods. The indeterminacy exhibits a nonmonotonic dependence on the interparticle friction coefficient. We verify directly that larger force-indeterminacy is accompanied by a more robust behavior against local perturbations. We also investigate the local indeterminacy of individual contact forces. The probability distribution of local indeterminacy changes its shape depending on friction. We find that local indeterminacy tends to be larger on force chains for intermediate friction. This correlation disappears in the large friction limit.Comment: 5 pages, 6 figure

    Pore Stabilization in Cohesive Granular Systems

    Full text link
    Cohesive powders tend to form porous aggregates which can be compacted by applying an external pressure. This process is modelled using the Contact Dynamics method supplemented with a cohesion law and rolling friction. Starting with ballistic deposits of varying density, we investigate how the porosity of the compacted sample depends on the cohesion strength and the friction coefficients. This allows to explain different pore stabilization mechanisms. The final porosity depends on the cohesion force scaled by the external pressure and on the lateral distance between branches of the ballistic deposit r_capt. Even if cohesion is switched off, pores can be stabilized by Coulomb friction alone. This effect is weak for round particles, as long as the friction coefficient is smaller than 1. However, for nonspherical particles the effect is much stronger.Comment: 10 pages, 15 figure
    corecore